Кинетическая энергия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальной точки и зависящая только от массы и модуля скорости материальных точек, образующих рассматриваемую физическую систему[1], энергия механической системы, зависящая от скоростей движения её точек в выбранной системе отсчёта. Часто выделяют кинетическую энергию поступательного и вращательного движения[2].

Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[3].

Простым языком, кинетическая энергия — это энергия, которую тело имеет только при движении. Когда тело не движется, кинетическая энергия равна нулю.

История[ | ]

Впервые понятие кинетической энергии было введено в трудах Готфрида Лейбница (1695 г.), посвящённых понятию «живой силы» [4].

Физический смысл[ | ]

Рассмотрим систему, состоящую из одной материальной точки, и запишем второй закон Ньютона:

где  — есть равнодействующая всех сил, действующих на тело. Скалярно умножим уравнение на перемещение материальной точки . Учитывая, что

получим:

Если , то есть внешние по отношению к системе силы отсутствуют, или равнодействующая всех сил равна нулю, то

а величина

остаётся постоянной. Эта величина называется кинетической энергией материальной точки. Если система изолирована, то кинетическая энергия является интегралом движения.

Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения:

где:  — масса тела

 — скорость центра масс тела

 — момент инерции тела

 — угловая скорость тела.

Физический смысл работы[ | ]

Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение её кинетической энергии[5]:

Кинетическая энергия вращательного движения[ | ]

Кинетическая энергия в гидродинамике[ | ]

В гидродинамике вместо массы материальной точки рассматривают массу единицы объёма, то есть плотность жидкости или газа . Тогда кинетическая энергия, приходящаяся на единицу объёма, двигающегося со скоростью , то есть плотность кинетической энергии есть

где по повторяющемуся индексу предполагается суммирование.

Поскольку в турбулентном потоке жидкости или газа характеристики состояния вещества (в том числе, плотность и скорость) подвержены хаотическим пульсациям, физический интерес представляют осреднённые величины. Влияние гидродинамических флуктуаций на динамику потока учитывается методами статистической гидромеханики, в которой уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса, получаются путём осреднения уравнений Навье-Стокса[6]. Если, в согласии с методом Рейнольдса, представить , , где черта сверху — знак осреднения, а штрих — отклонения от среднего, то вектор плотности кинетической энергии приобретёт вид:

где

— плотность кинетической энергии, связанной с упорядоченным движением жидкости или газа, а

— плотность кинетической энергии, связанной с неупорядоченным движением («плотность кинетической энергии турбулентности»[6], часто называемой просто «энергией турбулентности»),

— плотность кинетической энергии, связанная с турбулентным потоком вещества, где — вектор плотности флуктуационного потока массы (или «плотность турбулентного импульса»).

Эти формы кинетической энергии жидкости обладают разными трансформационными свойствами при преобразовании Галилея: кинетическая энергия упорядоченного движения зависит от выбора системы координат, в то время как кинетическая энергия турбулентности от него не зависит. В этом смысле кинетическая энергия турбулентности дополняет понятие внутренней энергии. Заметим, что подразделение кинетической энергии на упорядоченную и неупорядоченную (флуктуационную) части зависит от выбора масштаба осреднения по объёму или по времени. Так например, крупные атмосферные вихри циклоны и антициклоны, порождающие определённую погоду в месте наблюдения, рассматриваются в метеорологии как упорядоченное движение атмосферы, в то время как с точки зрения общей циркуляции атмосферы и теории климата это — просто большие вихри, относимые к неупорядоченному движению атмосферы.

Свойства кинетической энергии[ | ]

  • Аддитивность. Это свойство означает, что кинетическая энергия механической системы, состоящей из материальных точек, равна сумме кинетических энергий всех материальных точек, входящих в систему[1].
  • Инвариантность по отношению к повороту системы отсчёта. Кинетическая энергия не зависит от положения точки, направления её скорости и зависит лишь от модуля скорости или, что то же самое, от квадрата её скорости[1].
  • Сохранение. Кинетическая энергия не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея[1]. Свойства сохранения кинетической энергии и второго закона Ньютона достаточно, чтобы вывести математическую формулу кинетической энергии[7][8].

Соотношение кинетической и внутренней энергии[ | ]

Кинетическая энергия зависит от того, с каких позиций рассматривается система. Если рассматривать макроскопический объект (например, твёрдое тело видимых размеров) как единое целое, можно говорить о такой форме энергии, как внутренняя энергия. Кинетическая энергия в этом случае появляется лишь тогда, когда тело движется как целое.

То же тело, рассматриваемое с микроскопической точки зрения, состоит из атомов и молекул, и внутренняя энергия обусловлена движением атомов и молекул и рассматривается как следствие теплового движения этих частиц, а абсолютная температура тела прямо пропорциональна средней кинетической энергии такого движения атомов и молекул. Коэффициент пропорциональности — постоянная Больцмана.

Релятивизм[ | ]

При скоростях, близких к скорости света, кинетическая энергия любого объекта равна

где: масса объекта;

скорость движения объекта в выбранной инерциальной системе отсчёта;

скорость света в вакууме (энергия покоя).

Данную формулу можно переписать в следующем виде:

При малых скоростях () последнее соотношение переходит в обычную формулу .

См. также[ | ]

Примечания[ | ]

  1. 1 2 3 4 Айзерман, 1980, с. 49.
  2. Тарг С. М. Кинетическая энергия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 360. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  3. Батыгин В. В., Топтыгин И. Н. 3.2. Кинематика релятивистских частиц // Современная электродинамика, часть 1. Микроскопическая теория. — Москва-Ижевск: Институт компьютерных исследований, 2002. — С. 238. — 736 с. — 1000 экз. — ISBN 5-93972-164-8.
  4. Мах Э.  Механика. Историко-критический очерк её развития. — Ижевск: «РХД», 2000. — С. 252. — 456 с. — ISBN 5-89806-023-5.
  5. Сивухин Д. В. § 22. Работа и кинетическая энергия. // Общий курс физики. — М.: Наука, 1979. — Т. I. Механика. — С. 131. — 520 с.
  6. 1 2 Монин А. С., Яглом А. М. Статистическая гидромеханика. Часть 1. — М.: Наука, 1965. — 639 с.
  7. Айзерман, 1980, с. 54.
  8. Сорокин В. С. «Закон сохранения движения и мера движения в физике» // УФН, 59, с. 325—362, (1956)

Литература[ | ]