Пространство непрерывных функций

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Пространство непрерывных функций — линейное нормированное пространство, элементами которого являются непрерывные на отрезке функции (обычно обозначается , иногда или ) . Норма в этом пространстве определяется следующим образом:

Эту норму также называют нормой Чебышёва или равномерной нормой, так как сходимость по этой норме эквивалентна равномерной сходимости.

Свойства[ | ]

Вариации и обобщения[ | ]

Аналогичным образом это пространство строится так же и над областями и их замыканиями. В случае некомпактного множества максимум надо заменить на точную верхнюю грань.

Итак, пространством непрерывных ограниченных функций (вектор-функций) называется множество всех непрерывных ограниченных функций со введённой на нём нормой:


Наряду с чебышёвской нормой часто рассматривается пространство непрерывных функций с интегральной нормой:

В смысле этой нормы пространство непрерывных на отрезке функций уже не образует полного линейного пространства. Фундаментальной, но не сходящейся в нем является, например, последовательность

Его пополнение есть  — пространство суммируемых функций.

Литература[ | ]

  • А. Н. Колмогоров, С. И. Фомин. Элементы теории функций и функционального анализа. — М.: Наука, 2004.
  • Л. А. Люстерник, В. И. Соболев. Элементы функционального анализа. — М.: Наука, 1965.
  • M. Reed, B. Simon. Methods of modern mathematicals physics. Vol.1 Functional Analysis. — New York London: Academic Press, 1973.
  • К. Иосида. Функциональный анализ. — М.: Мир, 1967.