Кеплеровы элементы орбиты
Кеплеровы элементы — шесть элементов орбиты, определяющих положение небесного тела в пространстве в задаче двух тел:
- большая полуось (),
- эксцентриситет (),
- наклонение (),
- долгота восходящего узла (),
- аргумент перицентра (),
- средняя аномалия ().
Первые два определяют форму орбиты, третий, четвёртый и пятый — ориентацию плоскости орбиты по отношению к базовой системе координат, шестой — положение тела на орбите.
Содержание
Большая полуось[ | ]
Большая полуось — это половина главной оси эллипса (обозначена на рис.2 как a). В астрономии характеризует максимальное расстояние небесного тела от центра эллиптической орбиты.[источник не указан 2165 дней]
Эксцентриситет[ | ]
Эксцентрисите́т (обозначается «» или «ε») — числовая характеристика конического сечения. Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия.[1] Эксцентриситет характеризует «сжатость» орбиты. Он выражается по формуле:
- , где — малая полуось (см. рис.2)
Можно разделить внешний вид орбиты на пять групп:
- — окружность
- — эллипс
- — парабола
- — гипербола, — мнимое число
- — прямая (вырожденный случай)
Наклонение[ | ]
Наклоне́ние <орбиты> (накло́н <орбиты>, накло́нность <орбиты>) небесного тела — это угол между плоскостью его орбиты и плоскостью отсчёта (базовой плоскостью).
Обычно обозначается буквой i (от англ. inclination). Наклонение измеряется в угловых градусах, минутах и секундах.
- Если °, то движение небесного тела называется прямым[2].
- Если °°, то движение небесного тела называется обратным.
- В применении к Солнечной системе, за плоскость отсчёта обычно выбирают плоскость орбиты Земли (плоскость эклиптики). Плоскости орбит других планет Солнечной системы и Луны отклоняются от плоскости эклиптики лишь на несколько градусов.
- Для искусственных спутников Земли за плоскость отсчёта обычно выбирают плоскость экватора Земли.
- Для спутников других планет Солнечной системы за плоскость отсчёта обычно выбирают плоскость экватора соответствующей планеты.
- Для экзопланет и двойных звёзд за плоскость отсчёта принимают картинную плоскость.
Зная наклонение двух орбит к одной плоскости отсчёта и долготы их восходящих узлов, можно вычислить угол между плоскостями этих двух орбит — их взаимное наклонение, по формуле косинуса угла.
Долгота восходящего узла[ | ]
Долгота́ восходя́щего узла́ — один из основных элементов орбиты, используемый для математического описания ориентации плоскости орбиты относительно базовой плоскости. Определяет угол в базовой плоскости, образуемый между базовым направлением на нулевую точку и направлением на точку восходящего узла орбиты, в которой орбита пересекает базовую плоскость в направлении с юга на север. Для определения восходящего и нисходящего узла выбирают некоторую (так называемую базовую) плоскость, содержащую притягивающий центр. В качестве базовой обычно используют плоскость эклиптики (движение планет, комет, астероидов вокруг Солнца), плоскость экватора планеты (движение спутников вокруг планеты) и т. д. Нулевая точка — Первая точка Овна (точка весеннего равноденствия). Угол измеряется от направления на нулевую точку против часовой стрелки.
Восходящий узел обозначается ☊ или Ω.
Аргумент перицентра[ | ]
Аргуме́нт перице́нтра — определяется как угол между направлениями из притягивающего центра на восходящий узел орбиты и на перицентр (ближайшую к притягивающему центру точку орбиты спутника), или угол между линией узлов и линией апсид. Отсчитывается из притягивающего центра в направлении движения спутника, обычно выбирается в пределах 0°-360°.
При исследовании экзопланет и двойных звёзд в качестве базовой используют картинную плоскость — плоскость, проходящую через звезду и перпендикулярную лучу наблюдения звезды с Земли. Орбита экзопланеты, в общем случае случайным образом ориентированная относительно наблюдателя, пересекает эту плоскость в двух точках. Точка, где планета пересекает картинную плоскость, приближаясь к наблюдателю, считается восходящим узлом орбиты, а точка, где планета пересекает картинную плоскость, удаляясь от наблюдателя, считается нисходящим узлом. В этом случае аргумент перицентра отсчитывается из притягивающего центра против часовой стрелки.
Обозначается ().
Вместо аргумента перицентра часто используется другой угол — долгота перицентра, обозначаемый как . Он определяется как сумма долготы восходящего узла и аргумента перицентра. Это несколько необычный угол, так как он измеряется частично вдоль эклиптики, а частично — вдоль орбитальной плоскости. Однако часто он более практичен, чем аргумент перицентра, так как хорошо определен даже когда наклонение орбиты близко к нулю, когда направление на восходящий узел становится неопределенным[3].
Средняя аномалия[ | ]
Средняя аномалия для тела, движущегося по орбите — произведение его среднего движения и интервала времени после прохождения перицентра. Таким образом, средняя аномалия есть угловое расстояние от перицентра гипотетического тела, движущегося с постоянной угловой скоростью, равной среднему движению.
Обозначается буквой (от англ. mean anomaly)
В звёздной динамике средняя аномалия вычисляется по следующим формулам:
где:
- — средняя аномалия на эпоху ,
- — начальная эпоха,
- — эпоха, на которую производятся вычисления, и
- — среднее движение.
Либо через уравнение Кеплера:
где:
- — эксцентрическая аномалия ( на рис.3),
- — эксцентриситет.
Вычисление кеплеровых элементов[ | ]
В этом разделе не хватает ссылок на источники информации. |
Рассмотрим следующую задачу: пусть имеется невозмущённое движение и известны вектор положения и вектор скорости на момент времени . Найдём кеплеровы элементы орбиты.
Прежде всего, вычислим большую полуось:
По :
- (1) , где μ — гравитационный параметр, равный произведению гравитационной постоянной на массу небесного тела; для Земли μ = 3,986005⋅105 км³/c², для Солнца μ = 1,32712438⋅1011 км³/c².
Следовательно, по формуле (1) находим .
Примечания[ | ]
- ↑ А. В. Акопян, А. А. Заславский Геометрические свойства кривых второго порядка, — М.: МЦНМО, 2007. — 136 с.
- ↑ То есть, объект движется вокруг Солнца в том же направлении, что и Земля
- ↑ Hannu Karttunen, Pekka Kröger, Heikki Oja, Markku Poutanen, Karl Johan Donner. 6. Celestial Mechanics // Fundamental Astronomy. — 5-е изд. — Springer Science & Business Media, 2007. — С. 117—118.